If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2-4v-5=8
We move all terms to the left:
v^2-4v-5-(8)=0
We add all the numbers together, and all the variables
v^2-4v-13=0
a = 1; b = -4; c = -13;
Δ = b2-4ac
Δ = -42-4·1·(-13)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{17}}{2*1}=\frac{4-2\sqrt{17}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{17}}{2*1}=\frac{4+2\sqrt{17}}{2} $
| 2=b/5-3 | | -45=5p | | f(1)=1/4+3/2 | | 9y-12y=17-22 | | 9y-12y=12-22 | | v2−4v−5=−8 | | -4+2(-2-k)=-k+3(k-4) | | 63=d/7-58 | | -1/4x=80 | | -4x-28=-7x+41 | | -6(3+x)-6=4(x-2) | | 27+3y-10=12y-13-3y | | 3y+-2(14+5y)=7 | | 19-3x=64 | | 3q-5=12 | | 3y-2(14+5y)=7 | | 8x-11=5x=7 | | 3(2n-1)+7=-5 | | 6(6+c)=5(5-3) | | 7÷8p-4=10 | | 7(5+k)=6(3+k) | | 12x-20=14x+24 | | -1/2(2/5x+4)=5 | | -7=2x^2+8x | | 3/2x+16=15 | | 19(7c-1)-8=131c+1919 | | -3x-10(x+2)=13-7x | | b/8+5.1=9 | | 19(7c-1)-8=131c-19 | | 4z+12=-3z+12 | | 7x+5x-125=163 | | 19.95+0.55m=95.30 |